



#### Part No: GGBLA.125.A

#### **Description**

GGBLA.125.A – GPS L1/L2/L5/L6, GLONASS, BeiDou Ceramic Loop Antenna for cm-Level with RTK

#### **Features:**

Low Profile Small Footprint Embedded Loop Antenna

Centimeter-level accuracy achievable with RTK Systems

GPS/QZSS (L1/L2)

GPS/QZSS/IRNSS (L5)

Galileo (E1/E5a/E5b/E6)

GIONASS (G1/G2/G3)

BeiDou (B1/B2a/B2b)

Tuned for SMD Mounting on 80x40mm Ground Plane

High efficiency, up to 80%

Dimensions: 10 \* 3.2 \* 1.5 mm

RoHS & Reach Compliant



| 2. Specification 4 3. Antenna Characteristics 6 4. Radiation Patterns 9 5. Field Test Results 17 6. Mechanical Drawing 19 7. Antenna Integration Guide 20 8. Soldering Conditions 26 |    |                           |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------|----|
| 3. Antenna Characteristics 6 4. Radiation Patterns 9 5. Field Test Results 17 6. Mechanical Drawing 19 7. Antenna Integration Guide 20 8. Soldering Conditions 26 9. Packaging 27    | 1. | Introduction              | 2  |
| 4. Radiation Patterns 9  5. Field Test Results 17  6. Mechanical Drawing 19  7. Antenna Integration Guide 20  8. Soldering Conditions 26  9. Packaging 27                            | 2. | Specification             | 4  |
| 5. Field Test Results 17 6. Mechanical Drawing 19 7. Antenna Integration Guide 20 8. Soldering Conditions 26 9. Packaging 27                                                         | 3. | Antenna Characteristics   | 6  |
| <ul> <li>Mechanical Drawing</li> <li>Antenna Integration Guide</li> <li>Soldering Conditions</li> <li>Packaging</li> </ul>                                                           | 4. | Radiation Patterns        | 9  |
| 7. Antenna Integration Guide 20 8. Soldering Conditions 26 9. Packaging 27                                                                                                           | 5. | Field Test Results        | 17 |
| 8. Soldering Conditions 26 9. Packaging 27                                                                                                                                           | 6. | Mechanical Drawing        | 19 |
| 9. Packaging 27                                                                                                                                                                      | 7. | Antenna Integration Guide | 20 |
|                                                                                                                                                                                      | 8. | Soldering Conditions      | 26 |
| Changelog 28                                                                                                                                                                         | 9. | Packaging                 | 27 |
| Changelog 28                                                                                                                                                                         |    |                           |    |
|                                                                                                                                                                                      |    | Changelog                 | 28 |
|                                                                                                                                                                                      |    |                           |    |
|                                                                                                                                                                                      |    |                           |    |
|                                                                                                                                                                                      |    |                           |    |
|                                                                                                                                                                                      |    |                           |    |

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.











# 1. Introduction



The Taoglas GGBLA.125.A is a unique embedded ceramic miniature loop antenna designed for GPS L1,L2, L5 and L6 applications. It also covers all GNSS requirements including GLONASS (L1PT, L1CR, L5R), Galileo (E1, E2, E5a, E5b, E6), BeiDou (B1, B2, B3), IRNSS(L5) & QZSS Frequencies.

With dimensions of just  $10 \times 3.2 \times 1.5$ mm, a keep out area of just  $15 \times 9.8$ mm on the PCB, the GGBLA.125 makes an ideal multi band GNSS antenna solution for compact high precision automotive navigation or asset tracking devices where board space is at a premium. An SMD component, delivered on tape and reel, the middle edge-of-board mounted antenna, has an omnidirectional radiation pattern that allows customers to use an omnidirectional antenna in devices where orientation of the product may be unknown, or subject to frequent movement.

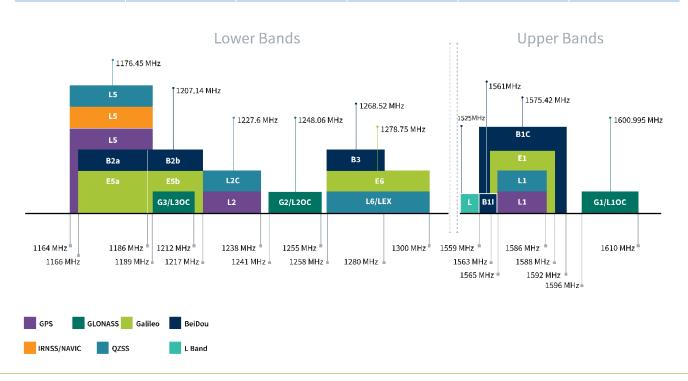
The wide bandwidth maintains high efficiency and reception stability on all GNSS bands from 1164MHz to 1602MHz. The GGBLA.125 exhibits efficiencies of between 60% and 80%, depending on the band used. With a peak gain of 2.6-3.6dBi, the gain performance compares with the ranges of much larger patch antennas of up to 18 x 18mm. Based on the loop antenna electrical effect, this antenna works best when placed in the center of the edge of the board.

#### Typical Applications Include:

- Navigation & RTK Systems
- Transportation, Marine & Agriculture
- Autonomous Vehicles
- UAVs and Robotics
- IOT Devices
- Location based applications



As with all onboard SMD antennas, care must be taken to ensure the device ground-plane layout and antenna matching has been done correctly. At any of our global design and test facilities, Taoglas can offer professional Gerber review, transmission line design, general integration support and final matching services of the GGBLA.125.A on your device board.


This antenna can be mounted with no performance degradation in either orientation as long as the antenna is soldered correctly via Surface mounting. Please see the integration instructions section for further detail regarding the optimum way to integrate this antenna into your device.

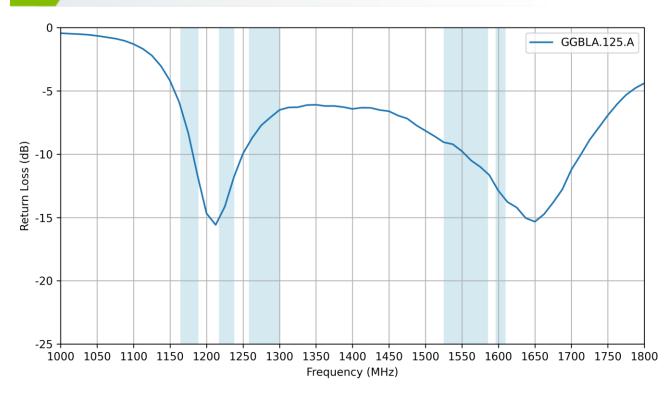
For further optimization to customer-specific device environments and for support to integrate and test this antennas performance in your device, contact your regional Taoglas Customer Services Team.



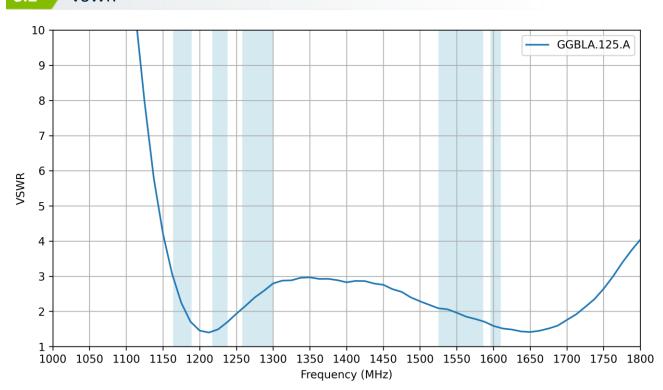
# 2. Specification

| GNSS Frequency Bands        |                         |                           |                    |                    |                   |
|-----------------------------|-------------------------|---------------------------|--------------------|--------------------|-------------------|
| GPS                         | L1<br>1575.42 MHz       | L2<br>1227.6 MHz          | L5<br>1176.45 MHz  |                    |                   |
|                             | •                       | •                         | •                  |                    |                   |
| GLONASS                     | G1<br>1602 MHz          | G2<br>1248 MHz            | G3<br>1207 MHz     |                    |                   |
|                             | -                       | •                         | -                  |                    |                   |
| Galileo                     | E1<br>1575.24 MHz       | E5a<br>1176.45 MHz        | E5b<br>1201.5 MHz  | E6<br>1278.75 MHz  |                   |
|                             | -                       | •                         | -                  | -                  |                   |
| BeiDou                      | B1C<br>1575.42 MHz      | B1I<br>1561 MHz           | B2a<br>1176.45 MHz | B2b<br>1207.14 MHz | B3<br>1268.52 MHz |
|                             | -                       | -                         | -                  | -                  | -                 |
| QZSS (Regional)             | L1<br>1575.42 MHz       | L2C<br>1227.6 MHz         | L5<br>1176.45 MHz  | L6<br>1278.75e6    |                   |
|                             | -                       |                           |                    | •                  |                   |
| IRNSS (Regional)            | L5<br>1176.45 MHz       |                           |                    |                    |                   |
|                             | •                       |                           |                    |                    |                   |
| SBAS                        | L1/E1/B1<br>1575.42 MHz | L5/B2a/E5a<br>1176.45 MHz | G1<br>1602 MHz     | G2<br>1248 MHz     | G3<br>1207 MHz    |
|                             | •                       | •                         |                    | •                  |                   |
| L-BAND<br>(Correction data) | 1525-1559               |                           |                    |                    |                   |
|                             | •                       |                           |                    |                    |                   |



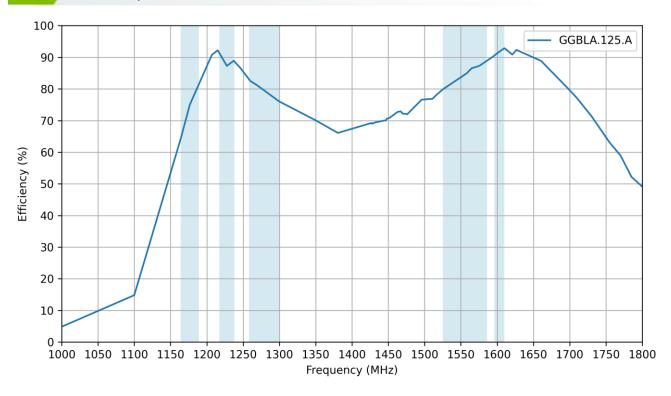



| GNSS Electrical                                            |                   |        |            |               |       |         |       |
|------------------------------------------------------------|-------------------|--------|------------|---------------|-------|---------|-------|
| GN93 Electrical                                            |                   |        |            |               |       |         |       |
| Frequency (MHz)                                            | 1176.45           | 1227.6 | 1278.75    | 1542          | 1561  | 1575.42 | 1602  |
| VSWR (max.)                                                | 2:1               | 1:1    | 2:1        | 1:1           | 1:1   | 1:1     | 1:1   |
| Passive Antenna Efficiency (%)<br>(Without cable loss)     | 76.66             | 89.47  | 79.92      | 82.46         | 85.76 | 86.88   | 91.44 |
| Passive Antenna Gain at Zenith (dBic) (Without cable loss) | 3.52              | 3.41   | 2.22       | 2.92          | 3.03  | 3.03    | 2.94  |
| Impedance                                                  | 50 Ω              |        |            |               |       |         |       |
| Polarization                                               | Linear            |        |            |               |       |         |       |
|                                                            | Mechanical        |        |            |               |       |         |       |
| Dimensions (mm)                                            | 10 x 3.2 x 1.5 mm |        |            |               |       |         |       |
| Weight (g)                                                 |                   |        |            | 0.17 g        |       |         |       |
|                                                            |                   |        | Environmen | tal           |       |         |       |
| Operating Temperature                                      | -40°C to 85°C     |        |            |               |       |         |       |
| Storage Temperature                                        |                   |        |            | -25°C to 85°C |       |         |       |
| Relative Humidity                                          |                   |        |            | 20°C to 70°C  |       |         |       |
| Moisture Sensitivity Level (MSL)                           |                   |        |            | 3 (168 Hours) |       |         |       |

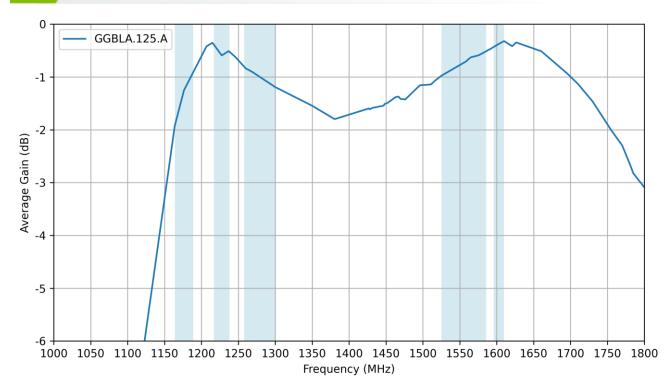



# 3. Antenna Characteristics

### 3.1 Return Loss

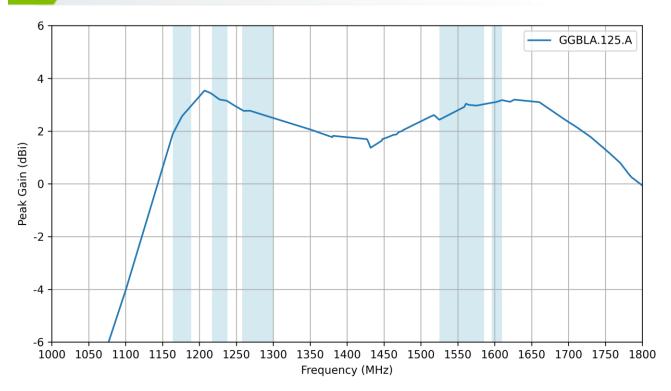



### 3.2 VSWR





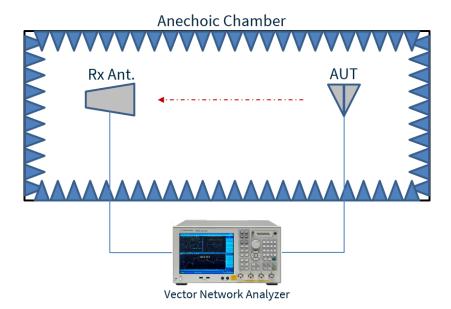

# 3.3 Efficiency

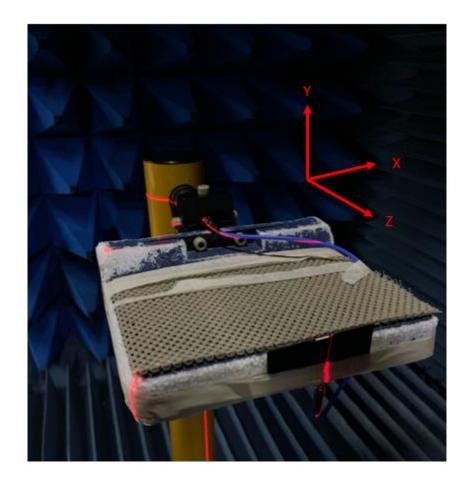



# 3.4 Average Gain



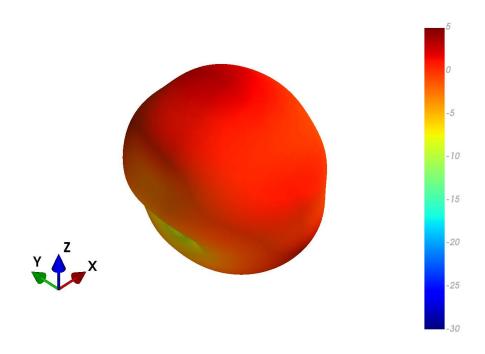


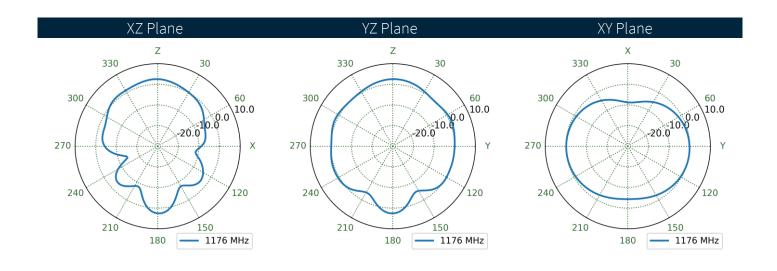

# 3.5 Peak Gain





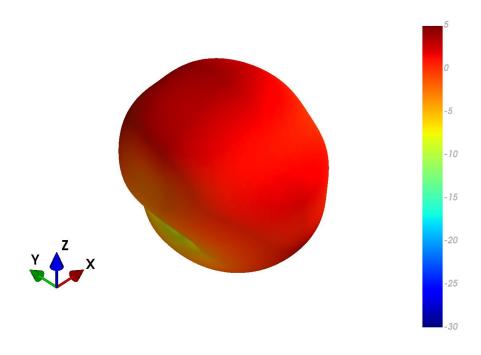

# 4. Radiation Patterns

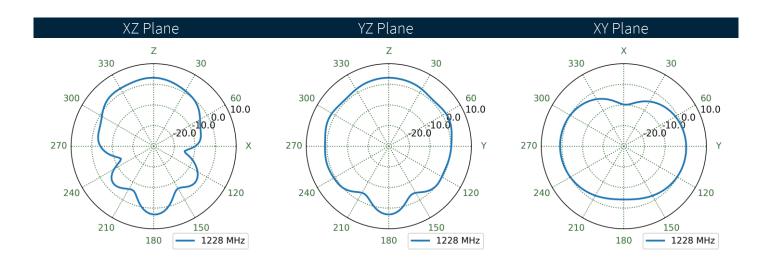

# 4.1 Test Setup





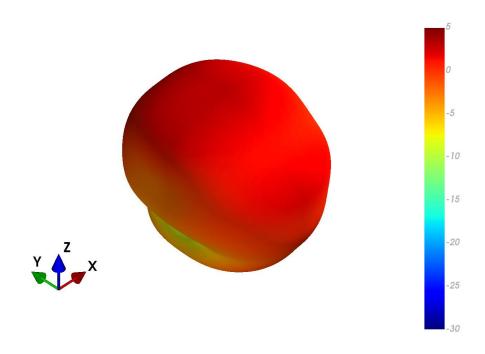


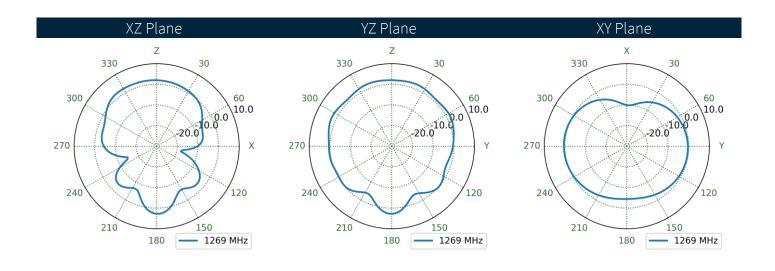


## 4.2 GGBLA.125.A Patterns at 1177 MHz





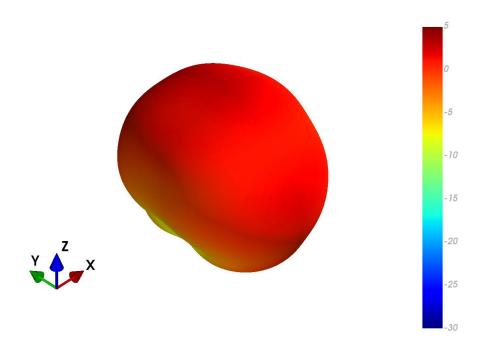


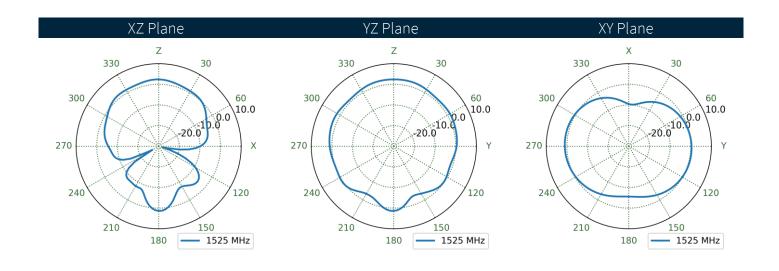


# GGBLA.125.A Patterns at 1228 MHz





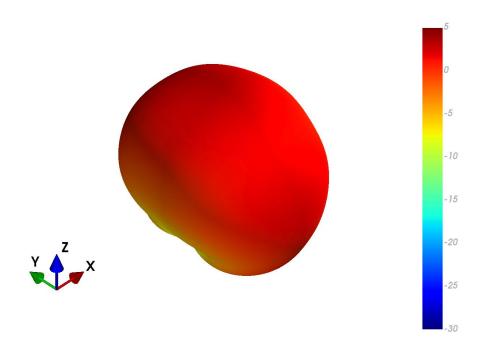


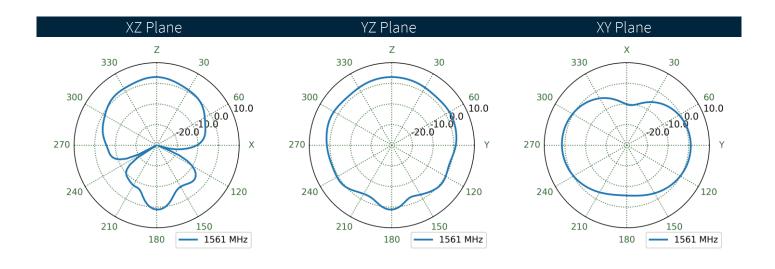


# 4.4 GGBLA.125.A Patterns at 1279 MHz





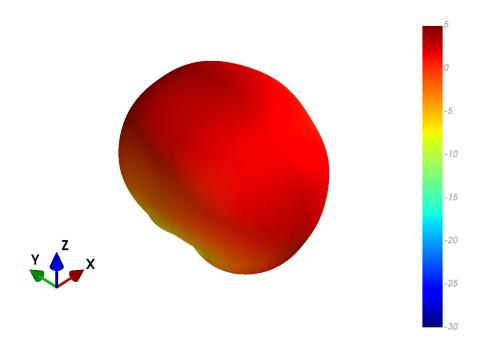


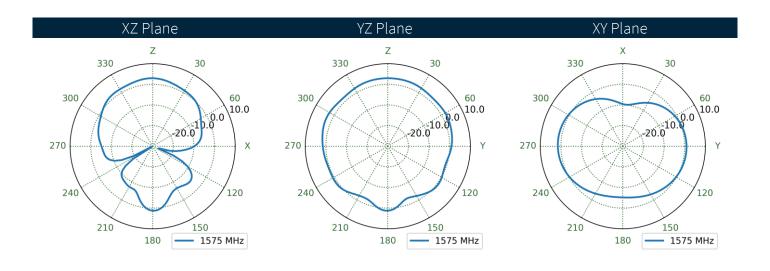


## GGBLA.125.A Patterns at 1542 MHz





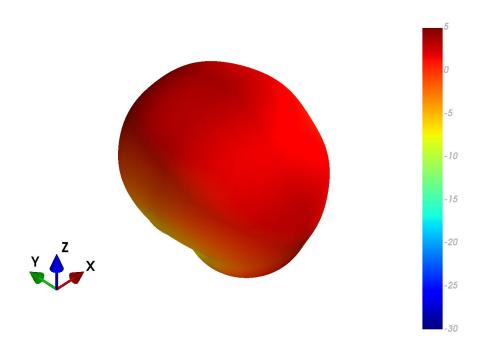


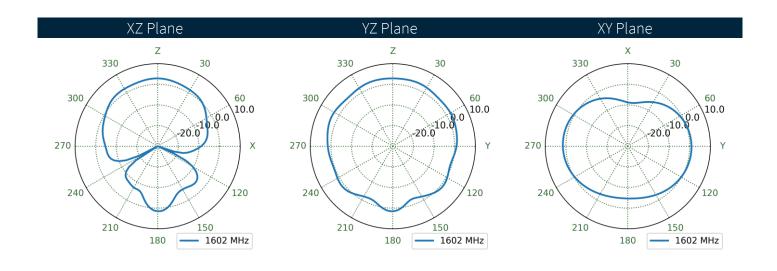


# 4.6 GGBLA.125.A Patterns at 1562 MHz









## 4.7 GGBLA.125.A Patterns at 1576 MHz








# 4.8 GGBLA.125.A Patterns at 1603 MHz

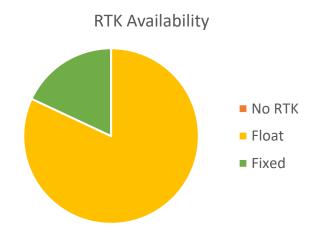






# Field Test Results

This section outlines the field test result for GGBLA.125.A antenna. The test was performed when the antenna was mounted on a static rooftop test set up in an open sky environment for a minimum of 6 hours.


Taoglas will show the field test results using the following receivers:

### 5.1 UBlox ZED-F9P-0XB

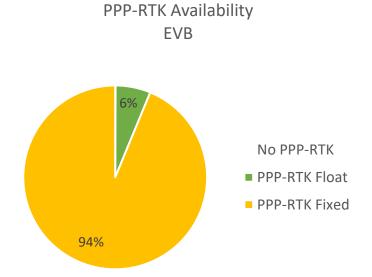
#### Receiver features:

- Multi-band GNSS: 184-channel GPS L1C/A L2C, GLONASS: L1OF L2OF, Galileo: E1B/C E5b, BeiDou: B1I B2I, QZSS: L1C/A L2C
- Multi-band RTK with fast convergence times and reliable performance
- Nav. update rate RTK up to 20 Hz
- Position accuracy = RTK 0.01 m + 1 ppm CEP

|                   | Positioning Accuracy Table (2D Accuracy) |           |            |                  |            |  |
|-------------------|------------------------------------------|-----------|------------|------------------|------------|--|
| Test<br>Condition | Correction<br>Service                    | CEP (50%) | DRMS (68%) | 2DRMS (95-98.2%) | TTFF (sec) |  |
| EVB               | RTK DISABLED                             | 106.72 cm | 134.17 cm  | 268.34 cm        | 32         |  |
|                   | RTK ENABLED                              | 10.59 cm  | 12.88 cm   | 25.75 cm         | 32         |  |





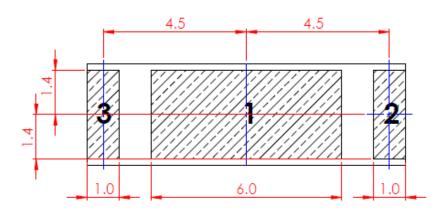

### 5.2 Ublox NEO-F9P-15B

#### Receiver features:

- Multi-band GNSS: GPS / QZSS (L1C/A, L5) GLONASS (L1OF) Galileo (E1-B/C, E5a) BeiDou (B1I, B2a) NavIC (SPS-L5)
- Multi-band PPP-RTK with fast convergence times and reliable performance
- Nav. update rate RTK up to 25 Hz
- Position accuracy = RTK 0.01 m + 1 ppm CEP

|                   | Positioning Accuracy Table (2D Accuracy) |           |            |                  |            |  |  |
|-------------------|------------------------------------------|-----------|------------|------------------|------------|--|--|
| Test<br>Condition | DRMS(cm)                                 | CEP (50%) | DRMS (68%) | 2DRMS (95-98.2%) | TTFF (sec) |  |  |
| EVD               | PPP-RTK<br>DISABLED                      | 72.58     | 87.31      | 174.61           | 19         |  |  |
| EVB               | PPP-RTK<br>ENABLED                       | 11.94     | 14.38      | 28.76            | 23         |  |  |


<sup>\*</sup>The RTK correction service used in previous measurements provides superior corrections compared to the PPP-RTK service used for measurements on the NEO-F9P.

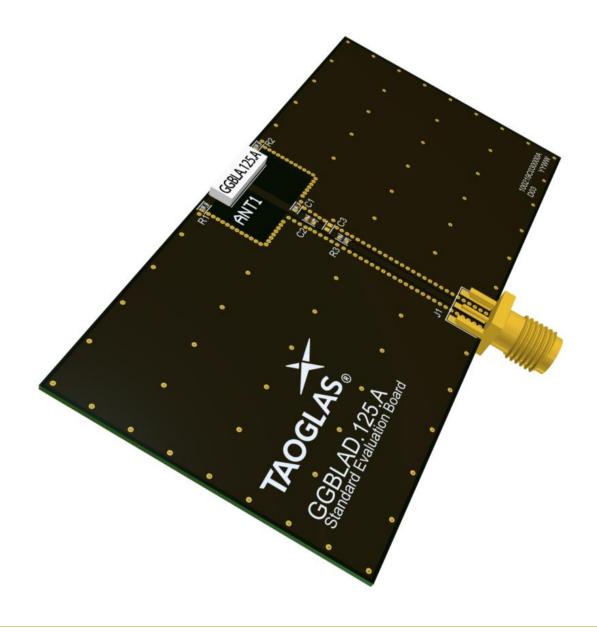





# . Mechanical Drawing





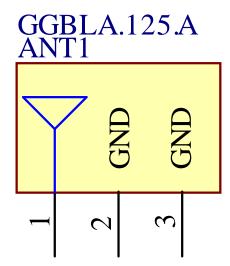



| PIN: | DESCRIPTION:  |
|------|---------------|
| 1    | Feed (50 ohm) |
| 2,3  | Ground        |



# Antenna Integration Guide





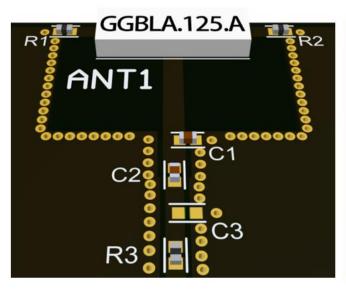


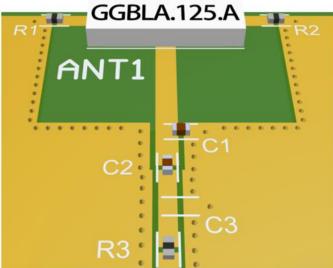

## 7.1 Schematic Symbol and Pin Definitions

The circuit symbol for the antenna is shown below. The antenna has 3 pins with all three pins as functional.

| Pin  | Description |
|------|-------------|
| 1    | RF Feed     |
| 2, 3 | Ground      |

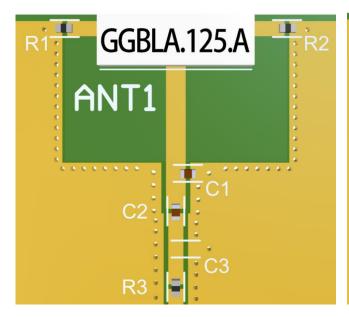


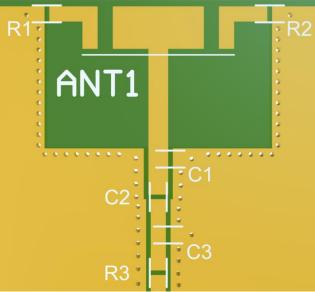

Please note you can download the design files & 3D model from the website here:


https://www.taoglas.com/product/ggbla-125-a-gps-l1-l2-l5-glonass-beidou-ceramic-loop-antenna/



### 7.2 Antenna Integration Guide


For any given PCB size, the antenna should ideally be placed on the centre edge of the PCB's longest side, to take advantage of the ground plane. Optimized matching components (R1,R2,R3,C1,C2,C3) can be placed as shown.






## 7.3 PCB Layout

The footprint and clearance on the PCB must meet the layout drawing in (7.7). Note the placement of the optimized components. C1 is placed as close as possible to the RF feed (pad 1) but still outside the keep out area. C2 is then placed tightly in series after that followed by C3 and then R3 in series. C3 is an optional component but the footprint is recommended in case it is needed. R1 & R2 are placed as close as possible to GND (pads 2 & 3).



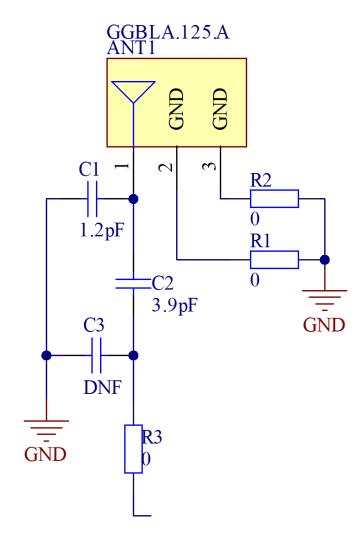




### 7.4 PCB Clearance

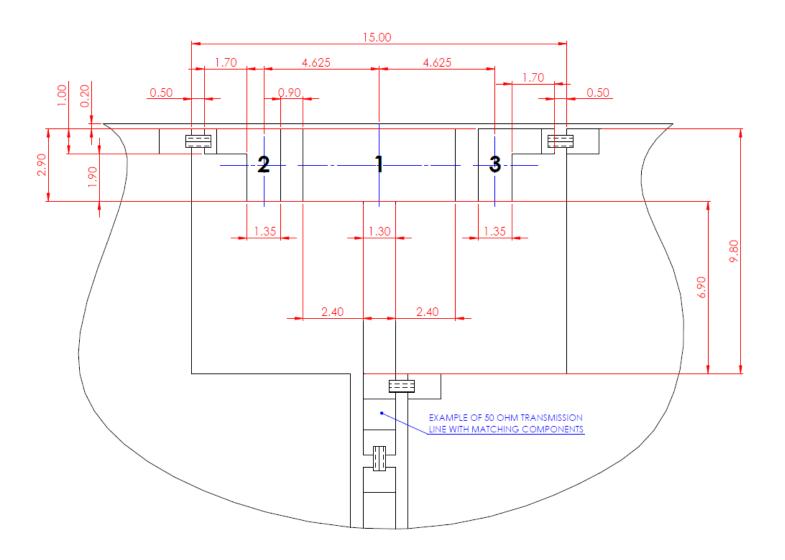
Below shows the antenna footprint and clearance through ALL layers on the PCB. Only the antenna pads and connections to feed and GND are present within this clearance area (marked RED). The clearance area extends to 9.8mm in length and 15mm in width. This clearance area includes the bottom side and ALL internal layers on the PCB.




### 7.5 Evaluation Board Dimensions



## 7.6 Matching Circuit

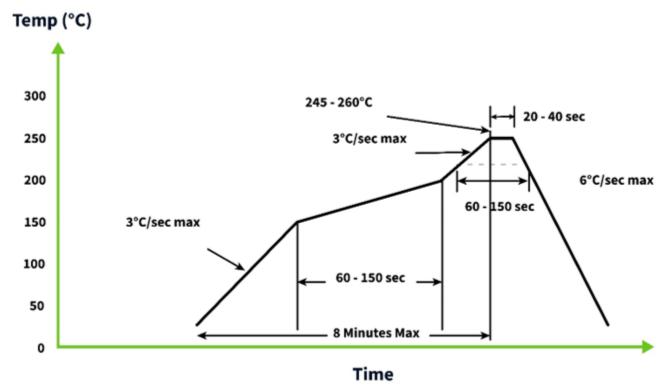

Matching components with the GGBLA.125.A is recommended for the antenna to have optimal performance on the evaluation board. Additional matching components may be necessary for your device, so we recommend incorporating these extra component footprints, forming a matching network, between the radio module and the antenna.

| Designator | Туре      | Value      | Manufacturer | Manufacturer Part<br>Number |
|------------|-----------|------------|--------------|-----------------------------|
| C1         | Capacitor | 1.2pF      | Murata       | GRM1555C1H1R2CA01D          |
| C2         | Capacitor | 3.9pF      | Murata       | GRM1555C1H3R9CA01D          |
| C3         | Capacitor | Not Fitted | -            | -                           |
| R1, R2, R3 | Resistor  | 0 Ohms     | Yageo        | RC0402JR-070RL              |





# 7.7 Footprint




| PIN: | DESCRIPTION:  |
|------|---------------|
| 1    | Feed (50 ohm) |
| 2,3  | Ground        |



# 8. Soldering Conditions

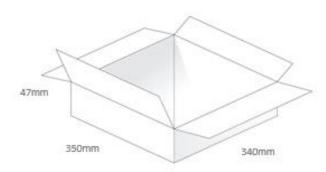
The GGBLA.125.A can be assembled by following the recommended soldering temperatures are as follows:



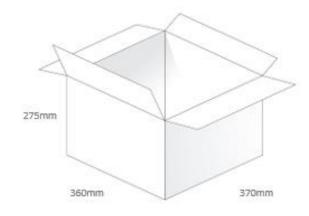
\*Temperatures listed within a tolerance of +/- 10º C

Smaller components are typically mounted on the first pass, however, we do advise mounting the GGBLA.125.A when placing larger components on the board during subsequent reflows.

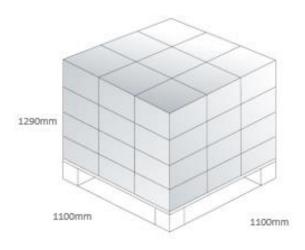
Note: Soldering flux classified ROLO under IPC J-STD-004 is recommended.




# 9. Packaging


1000pcs GGBLA.125.A per Tape & Reel Dimensions - Ø330\*28.4 Weight - 700g




1000pcs GGBLA.125.A per carton Dimensions - 350\*340\*47mm Weight - 900g



5000pcs GGBLA.125.A per carton Dimensions - 360\*370\*275mm Weight = 5.3Kg



Pallet Dimensions: 1100\*1100\*1300mm 36 Cartons Per Pallet 9 Cartons Per Layer, 4 Layers





#### Changelog for the datashee

### SPE-19-8-045 - GGBLA.125.A

| Revision: J (Current Version) |                                   |  |
|-------------------------------|-----------------------------------|--|
| Date:                         | 2023-09-06                        |  |
| Changes:                      | Updated Solder Reflow Information |  |
| Changes Made by:              | Cesar Sousa                       |  |

### **Previous Revisions**

| Revision: I      |                            |  |  |
|------------------|----------------------------|--|--|
| Date:            | 2023-07-25                 |  |  |
| Changes:         | Updated Field Test Results |  |  |
| Changes Made by: | Gary West                  |  |  |

| Revision: D      |                          |  |
|------------------|--------------------------|--|
| Date:            | 2020-06-04               |  |
| Changes:         | Added Field Test Results |  |
| Changes Made by: | Victor Pinazo            |  |

| Revision: H      |                                                                   |
|------------------|-------------------------------------------------------------------|
| Date:            | 2023-02-14                                                        |
| Changes:         | Added L Band to spec table and updated antenna integration guide. |
| Changes Made by: | Gary West                                                         |

| Revision: C      |                    |
|------------------|--------------------|
| Date:            | 2020-03-18         |
| Changes:         | Modified RTK Table |
| Changes Made by: | Yu Kai Yeung       |

| Revision: G      |                                  |
|------------------|----------------------------------|
| Date:            | 2022-05-11                       |
| Changes:         | Updated Packaging Specifications |
| Changes Made by: | Paul Doyle                       |

| Revision: B      |                                          |  |
|------------------|------------------------------------------|--|
| Date:            | 2019-12-08                               |  |
| Changes:         | Added GNSS Frequency Matrix and RTK Data |  |
| Changes Made by: | Yu Kai Yeung                             |  |

| Revision: F      |                                           |
|------------------|-------------------------------------------|
| Date:            | 2021-09-09                                |
| Changes:         | Added MSL rating, updated frontpage font. |
| Changes Made by: | Erik Landi                                |

| Revision: A (Original First Release) |                               |
|--------------------------------------|-------------------------------|
| Date:                                | 2019-04-04                    |
| Notes:                               | Initial Specification Release |
| Author:                              | Yu Kai Yeung                  |

| Revision: E      |                              |  |
|------------------|------------------------------|--|
| Date:            | 2021-05-06                   |  |
| Changes:         | Added L6 band to spec table. |  |
| Changes Made by: | Gary West                    |  |





www.taoglas.com

